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Abstract
At present, the representative and hot research is three-way decision based on rough set theory. In addition, this topic has 
been applied in wide variety of specific. In the article, we aim to discuss the rough set method of decision theory in the back-
ground of interval-valued fuzzy information systems (IVFIS). First, the main work is to transform the IVFIS into two kinds of 
approximate spaces by the defined relations, which are fuzzy approximation space and interval-valued fuzzy approximation 
space, respectively. Simultaneously, fuzzy probability and IVF probability are considered in the whole process. Second, we 
study two kinds of decision-theoretic rough set methods by combining the Bayesian decision process. Finally, based on the 
above decision-making models, some illustrative examples about the credit evaluation of enterprises are introduced to deal 
with the real value and interval-valued data. These results show that the rough set method of decision theory we proposed 
has wider applications than decision-theoretic rough sets (DTRS).

Keywords Interval-valued fuzzy information system · Fuzzy approximate space · IVF Fuzzy approximate space · The 
rough set method of decision theory

1 Introduction

Rough set (Pawlak 1982) was proposed by Poland mathema-
tician Pawlak, which is a theory to deal with imprecise and 
incomplete data. Rough set (Mandal and Ranadive 2018a, b; 
Agbodah 2018) theory is an indispensable mathematical tool 
in the field of data mining and decision theory. Compared 
with the classical set theory (Liang et al. 2012), the Paw-
lak rough set theory does not need whatever prior knowl-
edge about information systems, for instance, the member-
ship functions and probability distribution of the fuzzy set. 
Pawlak described the uncertainty of data sets through the 
upper and lower approximations of basic knowledge, which 
derived the concept of classification or decision rule on the 
basis of the indistinguishability of the theory of objects. As 
a stretch of the Pawlak’s rough set model (Pawlak 1997), 
the decision theory rough set (DTRS) model (Xu and Li 

2013, 2016; Li et al. 2014, 2016; Dai et al. 2016; Pedrycz 
and Chen 2011, 2015a, b; Qian et al. 2006, 2010, 2014) has 
been widely used in the uncertain analysis of data. As an 
extensive use of rough set model, DTRS not only provides 
an explanation of the probabilistic RST (PRST), but also 
develops a generalized PRST model to deal with uncertainty 
problem. With the help of Bayesian decision procedures (Li 
and Zhou 2011; Fang and Hu 2016), Yao proposed DTRS 
(2004). In the 1990s, the concept of DTRS includes posi-
tive rules, boundary rules, and negative rules, namely, three-
way decision making. Positive rules determine acceptance, 
negative rules make reject and boundary domain rules that 
determine the non-constraint (extension). At present, three-
way decision theories are applied to a wider range of fields, 
such as e-mail filtering, information filtering, text classifica-
tion cation, clustering analysis, investment decision making, 
government decision making, network support system (Li 
et al. 2015, 2017; Pawlak 1997; Huang et al. 2017; Hao et al. 
2017) and so on. The two primary coverages of DTRS are 
the conditional probability and thresholds. Thresholds of 
DTRS are controlled by loss functions.

The application of rough set theory has been researched by 
many scholars in the literatures. The loss function of rough 
set is a new research direction. The general loss function 
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(Lin et al. 2013, 2015; Fan et al. 2016) of supervised leaning 
was defined by Miao and Li. Li and zhou (Lu et al. 2016) 
put forward two hypotheses for the value of loss, and put 
forward a multi angle DTRS decision-making model. Li 
et al. assume that the general wastage in the classification 
includes the test cost and the wrong classification cost, and 
the algorithm is designed to find the best test attribute set at 
the minimum total cost (Li et al. 2012). Lingras et al. pro-
posed a cluster based quality target according to DTRS by 
taking into account all kinds of losses (Lingras et al. 2009). 
The experiments demonstrated the effects of cluster quanti-
fication target. The revenue function and cost function are 
used to measure the loss function, and a profit based three 
element investment decision method is further proposed (Liu 
et al. 2011a, b). Liu et al. suggest that someone can use the 
object directly (such as money, energy, and time) to assess the 
loss or conduct some questionnaire or behavioral experiments 
(Liu et al. 2011a, b). On the basis of multi-agent decision 
preference, Yang et al. discussed some loss sets of multi-
agent DTRS model (Yang and Yao 2012; Yang et al. 2013). 
Yao et al. proposed the threshold with the relative value 
of the loss and reduces the number of thresholds (2011). 
According to the loss of DTRS, a new clustering validity 
evaluation function is constructed, considering the uncer-
tainty of inaccuracy. Liu and Liang researched the rough set 
theory of decision theory with interval-valued loss function 
and triangular fuzzy loss function, respectively (Liang and 
Liu 2014; Liang et al. 2013). Chen et al. used the knowledge 
of interval-valued fuzzy sets to deal with different applica-
tions (Chen et al. 1997; Chen and Hsiao 2000; Mondal et al. 
2017; Mandal and Ranadive 2018a, b). At the same time, 
they put forward interval-valued decision-theoretic rough set 
(IVDTRS) and triangular fuzzy decision-theoretic rough set 
(TFDTRS) (Yao 2004; Lu et al. 2016; Berg et al. 2013; Buri-
llo and Bustince 1996; Deng and Yao 2014). In the context 
of shade sets (Pedrycz 2013), Yao and Deng presented the 
three-way decision-theoretic approximations of fuzzy sets. 
Zhao and Hu (2015); Fang and Hu (2016) proposed the prob-
ability graded rough set (PGRS), which takes into account 
the relative quantitative information about basic concepts and 
knowledge particles. Tan et al. (2015); Xu and Yu (2017); 
Sahin and Bay (2001) discussed the generalization of Paw-
lak rough set and gradient rough set (GRS). In approximate 
space, the elements of different equivalence classes may dif-
fer greatly from each other, so that different degrees of infor-
mation can be represented (Wang et al. 2016, 2017; Xu et al. 
2011). The absolute quantity information of intersection of 
object set and equivalence class are related to GRS model. In 
GRS model, the intersection between basic set and equiva-
lence class is measured by parameters. Xu brought forward 
generalized multi-granulation double-quantitative (Kabaila 
2013; Casella et al. 1993; Allen 1990) decision-theoretic 
rough set. In this paper, the classical multi-granularity is 

extended to the generalized multi-granularity, and the upper 
and lower approximations are described by the degree and 
precision. The traditional rough set (Lin et al. 2012) method 
mainly deals with discrete attribute values. However, in many 
practical problems, due to the complexity of the problem, 
the attribute values in information systems are often con-
tinuous. Thus, it is necessary to discretize the real data in 
the range of continuous attribute values, and factually, its 
essence is to divide the attribute range into several discrete 
intervals. Therefore, knowledge acquisition and decision-
making methods of IVISs are worthy of study. On the basis of 
fuzzy and IVF probabilities, the extension of DTRS method 
was put forward by Zhao and Hu (2015); Dai et al. (2016). 
In interval-valued approximation space, Bayesian decision 
theory was used to establish the interval-valued fuzzy prob-
ability decision theory model. However, Hu directly gave 
the similar relation between fuzzy and interval-valued fuzzy 
approximation spaces. The main dedications of this paper 
are as below: fuzzy equivalence relation and interval-valued 
fuzzy equivalence relation of interval-valued fuzzy informa-
tion system are proposed. Furthermore, fuzzy probability 
approximation space and interval-valued fuzzy probability 
approximation space are established, respectively. By means 
of rough set theory, the fuzzy probability approximation 
space and interval-valued fuzzy probability approximation 
space are analyzed.

The structure of this article is as follows: in Sect. 2, we 
review some basic concepts such as fuzzy events, fuzzy 
probability and interval-valued fuzzy sets, etc. By defining 
a similar relation among objects, IVFIS is converted into a 
fuzzy approximation space. According to the fuzzy probabil-
ity, fuzzy DTRS method is discussed in Sect. 3. In addition, 
in Sect. 4, we translated IVFIS into an IVF approximation 
space, and then, IVF DTRS method is established in our 
work. At the same time, we construct a real-life example to 
explain and illustrate decision-making method. Finally, some 
conclusions are summarized in Sect. 5.

2  Related work

For more convenience, the basic concepts of fuzzy event, 
interval-valued fuzzy information system etc. are reviewed 
in this section.

Let U be a domain and a fuzzy set Ã , which is seen as a 
mapping from U to [0, 1]. We denote all the fuzzy sets on 
U as  (U) . For all ∀o ∈ U , we define the basic operation of 
fuzzy sets as follows (Zhang et al. 2013):

Let U be object set, range of object set V, R̃:U × V → [0, 1] . 
Therefore, binary relation R̃ is described as a fuzzy rela-
tion from U to V. If U = V  , then R̃ is a fuzzy relation on 

(1)(�AB)(o) = Ã(o)B̃(o), Ã�(o) = 1 − Ã(o).
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U, and we denote all the fuzzy binary relation on U × U as 
R ∈  (U × U).

Next, we give the relevant properties of fuzzy binary 
relation:

1. R̃ is reflexive, if R̃(o, o) = 1 for ∀o ∈ U.

2. R̃ is symmetric, if R̃(o, y) = R̃(y, o) for ∀o, y ∈ U.

3. R̃ is transitive, if R̃(o, y) ≥ ∨z∈U(R̃(o, z) ∧ R̃(z, y)) for 
∀o, y ∈ U.

Definition 2.1 (Zadeh 1968) Let (U,,P) be a probability 
space, where  is �− universes composed of fuzzy subsets 
on U. If a fuzzy subset Ã = Ã(o) is a random variable, then 
Ã is also a fuzzy event on U. The probability of Ã is

If U is a finite set, U =
{
oi|i = 1, 2,… , n

}
 , P(oi) = pi , then

Definition 2.2 (Zadeh 1968) Let (U,,P) be a probabil-
ity space, two fuzzy set Ã and B̃ on U. In addition, content 
P(B̃) ≠ 0 , then the conditional probability of A given B is 
defined as follows:

Proposition 2.3 (Zhao and Hu 2015) Let (U,,P) be a prob-
ability space, A is a classical event on U. For each fuzzy 
event B̃ on U, we have

Suppose that U be a finite universe, I[0, 1] =
{
[a−, a+]|

0 ≤ a
− ≤ a

+ ≤ 1
}
, then interval-valued fuzzy(IVF) set is 

a mapping Ã : U → I[0, 1] on U. From this, for all o ∈ U , 
Ã(o) = [Ã−(o), Ã+(o)], then Ã(o) is an interval number. 
A−,A+ are fuzzy sets on U and Ã−(O) ≤ Ã+(O). For ∀o ∈ U

, we define the product and complement of fuzzy sets as 
follows:

An IVF relation R̃ is a mapping from U × V  to I[0, 1]. If 
U = V  , then R̃ is an IVF relation on U. Next, we give the 
relevant properties of IVF binary relation:

(2)P(Ã) ≜ �U

Ã(o) dP.

(3)P(Ã) ≜
n∑

i=1

Ã(oi)pi.

(4)P(Ã|B̃) = P(�AB)

P(B̃)
.

(5)P(A|B̃) + P(A�|B̃) = 1.

(�AB)(o) = Ã(o)B̃(o) = [Ã−(o)B̃−(o), Ã+(o)B̃+(o)],

Ã�(o) = [1 − Ã+(o), 1 − Ã−(o)].

1. R̃ is reflexive if R̃(o, o) = 1 for ∀o ∈ U.
2. R̃ is symmetric if R̃(o, y) = R̃(y, o) for ∀o, y ∈ U.
3. R̃ is transitive if R̃(o, y) ≥ ∨z∈U(R̃(o, z) ∧ R̃(z, y)) for 

∀o, y ∈ U.

Now, the rules of two interval numbers [a−, a+] , [b−, b+] are 
given as follows:

and if b− ≠ 0 , the division is

Here is a customary notation, and notation × is omitted in 
result.

Definition 2.4 (Zhao and Hu 2015) Let (U,,P) be a prob-
ability space. If

then Ã is an IVF event on U. The IVF probability of Ã is

If U is a finite set, U =
{
oi|i = 1, 2,… , n

}
 , P(oi) = pi , then

Definition 2.5 Let (U,,P) be a probability space, and we 
give two IVF events Ã, B̃ on U. If P(B̃−) ≠ 0 , then the con-
ditional probability of A given B is

Proposition 2.6 Let (U,,P) be a probability space. Then, 
for ∀Ã, B̃ ∈ I[0,1](), it satisfies

According to this definition

[a−, a+] ± [b−, b+] = [a− ± b−, a+ ± b+]

[a−, a+] × [b−, b+] = [a−b−, a+b+]

[a−, a+]

[b−, b+]
=

[
a−

b−
∧
a+

b+
,
a−

b−
∨
a+

b+

]

[a−, a+] ⪯[b−, b+] = [a− ≤ b−, a+ ≤ b+].

(6)Ã ∈ I[0,1]() =
{
Ã ∈ I[0,1](U) ∶ Ã = [Ã−, Ã+]

}

P(Ã) ≜�U

Ã(o) dP =

[

�U

Ã−(o) dP,�U

Ã+(o) dP

]

= [P(Ã−),P(Ã+)].

(7)P(Ã) ≜
n∑

i=1

Ã(oi)pi =

[
n∑

i=1

Ã−(oi)pi,

n∑

i=1

Ã+(oi)pi

]
.

(8)P(Ã|B̃) = P(�AB)

P(B̃)
.

P(Ã|B̃) =
[
P(Ã−|B̃−) ∧ P(Ã+|B̃+),P(Ã−|B̃−) ∨ P(Ã+|B̃+)

]
.

P(Ã�|B̃) =
[
1 − P(Ã−|B̃−) ∨ P(Ã+|B̃+), 1 − P(Ã−|B̃−)

∧P(Ã+|B̃+)
]
.
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An interval-valued fuzzy information system(IVFIS) is an 
ordered quadruple I = (U,AT ,V ,F) , where U and AT are 
all non-empty finite sets; V = ∪a∈ATVa and Va is a domain 
of attribute a; F = {f ∶ U → V} are mapping sets of object 
attribute value, in which f ∶ U × AT → V  is a function 
such that f (o, a) ∈ Va , for each a ∈ AT , o ∈ U  , called 
an information function, and Va is an IVF set of universe 
U. That is f (o, a) = [aL(o), aU(o)] for all a ∈ AT  , where 
aL(o) ∶ U → [0, 1] and aU(o) ∶ U → [0, 1] and satisfy 
aL(o) ≤ aU(o) (∀o ∈ U) . Especially, when aL(o) = aU(o) , 
f(o, a) degenerates into a real number.

Decision-theoretic rough sets were first proposed by 
Yao for the Bayesian decision process. On the basis of the 
thoughts of three-way decisions, DTRS adopts two state sets 
and three action sets to depict the decision-making process. 
The state set is denoted by Ω = {O,OC} showing that an 
object is part of O and is outside O, respectively. The action 
sets with respect to a state are given by A = {aP, aB, aN} , 
where aP , aB and aN represent three actions about deciding 
o ∈ POS(O) , o ∈ BND(O) , and o ∈ NEG(O) , namely, a tar-
get x belongs to O, is uncertain and not in O, respectively. 
The loss function concerning the loss of expected is given 
by the 3 × 2 matrix by taking various actions in the different 
states in Table 1.

In Table 1, �PP , �BP , and �NP express the cost happened 
when taking actions of aP , aB and aN and an target is part of 
O, respectively. Similarly, �PN , �BN , and �NN indicate the cost 
turned up for taking previous actions when the target does is 
not part of O. For a target o, the expected cost on taking the 
actions could be expressed as

By the Bayesian decision process, we can get the following 
minimum-risk decision rules:

(P) If o satisfied R(aP|[o]R) ≤ R(aB|[o]R) and R(a
P
|[o]

R
)

≤ R(a
N
|[o]

R
) , then o ∈ POS(O).

(B) If o satisfied R(aB|[o]R) ≤ R(aP|[o]R) and R(a
B
|[o]

R
)

≤ R(a
N
|[o]

R
) , then o ∈ BND(O).

(N) If o satisfied R(aN|[o]R) ≤ R(aP|[o]R) and R(a
N
|[o]

R
)

≤ R(a
B
|[o]

R
) , then o ∈ NEG(O).

(9)R(aP|[o]R) = �PPP(O|[o]R) + �PNP(O
c|[o]R);

(10)R(aB|[o]R) = �BPP(O|[o]R) + �BNP(O
c|[o]R);

(11)R(aN|[o]R) = �NPP(O|[o]R) + �NNP(O
c|[o]R).

In addition, by taking into account, the loss of receiving 
the right things is not greater than the latency, and both of 
them are less than the loss of refusing the accurate things; 
at the same time, the loss of rejecting improper things is 
less than or equal to the deletion in accepting the correct 
things, and both shall be smaller than the loss of receiving 
the invalidate things. Hence, a reasonable assumption is that 
0 ≤ 𝜆PP ≤ 𝜆BP < 𝜆NP and 0 ≤ 𝜆NN ≤ 𝜆BN < 𝜆PN.

Accordingly, the conditions of the three decision rules 
(P)–(N) are reducible to the following form.

(P) If o satisfied P(O|[o]R) ≥ � and P(O|[o]R) ≥ � , then 
o ∈ POS(O).
(B) If o satisfied P(O|[o]R) ≤ � and P(O|[o]R) ≥ � , then 
o ∈ BND(O).
(N) If o satisfied P(O|[o]R) ≥ � and P(O|[o]R) ≤ � , then 
o ∈ NEG(O).

Where the thresholds values are given by

3  Fuzzy probability decision‑theoretic 
rough set based on IVFIS

Since the definition of similarity given in the literature  
(Vanderpooten 2000), the calculation results exist a big dif-
ference when dealing with the cardinality of intervals for 
real numbers in the process of various index data types. 
Under this circumstance, it is easy to cause the loss of deci-
sion information leading to the false decision making finally. 
According to the decision-making problem of uncertain 
multi-attribute with value as interval numbers, this paper 
introduces a new definition of relative similarity degree of 
interval numbers starting from the basic ideas of the advan-
tages and disadvantages on the decision scheme. The new 
method makes it more convenient to describe the links and 
differences between the decision-making program, which 
overcomes the shortcomings of the literature (Vanderpooten 
2000) on the definition of interval number similarity.

Definition 3.1 Let I = (U,AT ,V ,F) be an IVFIS, ∀ak ∈ AT , 
oi, oj ∈ U , f (oi, ak) = [aL

k
(oi), a

U
k
(oi)] , f (oj, ak) = [aL

k
(oj), a

U
k

(o
j
)] , then

(12)� =
�PN − �BN

(�PN − �BN) + (�BP − �PP)
;

(13)� =
�BN − �NN

(�BN − �NN) + (�NP − �BP)
;

(14)� =
�PN − �NN

(�PN − �NN) + (�NP − �PP)
.

Table 1  Cost function O: positive O
c : negative

a
P

�
PP

�
PN

a
B

�
BP

�
BN

a
N

�
NP

�
NN
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is called the relative similarity degree of f (oi, ak) and 
f (oj, ak) . From the above formula, the relative similar-
ity degree of f (oi, ak) and f (oj, ak) , that is the similarity 
of objects oi and oj under the attribute ak . In addition, the 
greater the value of sak (oi, oj) , the greater the similarity 
degree. Especially, when sak (oi, oj) = 1 , then interval number 
f (oi, ak) is completely similar to f (oj, ak) . In other words, the 
property value of objects oi and oj is identical.

Theorem  3.2 For any three intervals x̃ = [oL, oU] , 
ỹ = [yL, yU], and z̃ = [zL, zU], the following properties can 
be obtained.

1. s(õ, ỹ) is bounded, 0 ≤ s(õ, ỹ) ≤ 1.
2. s(õ, ỹ) is reflexive, s(õ, õ) = 1.
3. s(õ, ỹ) is symmetric, s(õ, ỹ) = s(̃y, õ).
4. s(õ, ỹ) is transitive; if s(õ, ỹ) = 1 and s(̃y, z̃) = 1, then 

s(õ, z̃) = 1.
5. s(õ, ỹ) is contiguous; if z̃  is closer to ỹ  than õ, 

then s(õ, ỹ) ≤ s(̃z, ỹ); if z̃  is closer to õ than ỹ , then 
s(õ, ỹ) ≤ s(õ, z̃).

Definition 3.3 Let I = (U,AT ,V ,F) be an IVFIS, ∀ak ∈ AT , 
oi, oj ∈ U  , f (oi, ak) = [aL

k
(oi), a

U
k
(oi)] , f (oj, ak) = [aL

k
(oj),

aU
k
(oj)] . The similarity degree of objects oi and oj under 

attribute set AT is as follows:

Through establishing analogical relations RAT , we could turn 
IVFIS into a fuzzy approximation space (U, R) in accord-
ance with Definitions 3.1 and 3.2. The subscript AT will 
be omitted in the rear. Therefore, we can get the following 
properties.

(a) First, U is a non-empty classical set, a binary relation R 
from U to U indicates a fuzzy set R ∶ U × U → [0, 1] . 
Therefore, R is a fuzzy relation.

(b) Second, R is a fuzzy equivalence relation on U. The 
reasons are as follows:

• ∀o ∈ U , R(o, o) = 1 , R is reflexive;
• ∀o, y ∈ U , R(o, y) = R(y, o) , R is symmetric;

(15)
sak (oi, oj) = exp

{
−

1

2
[|aL

k
(oi) − aL

k
(oj)| + |aU

k
(oi)

− aU
k
(oj)|]

}

(16)

RAT (oi, oj) = exp

{
−
1

2

[
p∑

k=1

|aL
k
(oi) − aL

k
(oj)|

+

p∑

k=1

|aU
k
(oi) − aU

k
(oj)|

]}
.

• ∀o, y, z ∈ U , R(o, y) ∧ R(y, z) ≤ R(o, z) , R is transi-
tive.

From the above, we can find directly that these three con-
ditions are true. Therefore, ordered pair (U, R) is a fuzzy 
approximation space.

Given the probability P with its description R, a fuzzy 
probability approximation space (U, R, P) is constructed, 
where U be a universe, R be a fuzzy equivalence relation, 
and P be a fuzzy probability.

Given a fuzzy probability approximation space (U, R, P), 
∀o ∈ U , [o]R is denoted by [o]R(y) = R(o, y) for any y ∈ U . 
Thus, the expected costs of adopting various actions in dif-
ferent states for o are expressed as follows:

Theorem 3.4 (Zhao and Hu 2015) The condition probability 
P̃(O|[o]R) and P̃(Oc|[o]R) are calculated by

vhere pi = P(oi). The computing method of condition prob-
ability is not the same as we know before.

Since P̃(O|[o]R) + P̃(Oc|[o]R) = 1 for every o ∈ U . It is 
further expressed as

According to Bayesian decision process, the decision rules 
(P)–(N) in Sect. 2 can be rewritten as the following form:

(P1) I f  o  sat isf ied R̃(aP|[o]R) ≤ R̃(aB|[o]R) and 
R̃(aP|[o]R) ≤ R̃(aN|[o]R) , then o ∈ POS(O).
(B1) I f  o  sat isf ied R̃(aB|[o]R) ≤ R̃(aP|[o]R) and 
R̃(aB|[o]R) ≤ R̃(aN|[o]R) , then o ∈ BND(O).
(N1) If  o  sat isf ied R̃(aN|[o]R) ≤ R̃(aP|[o]R) and 
R̃(aN|[o]R) ≤ R̃(aB|[o]R) , then o ∈ NEG(O).

(17)R̃(aP|[o]R) = �PPP̃(O|[o]R) + �PNP̃(O
c|[o]R);

(18)R̃(aB|[o]R) = �BPP̃(O|[o]R) + �BNP̃(O
c|[o]R);

(19)R̃(aN|[o]R) = �NPP̃(O|[o]R) + �NNP̃(O
c|[o]R).

(20)P̃(O�[o]R) =
∑

oi∈O
R(o, oi)pi

∑
oj∈U

R(o, oj)pj
,

(21)P̃(Oc�[o]R) =
∑

oi∈O
c R(o, oi)pi

∑
oj∈U

R(o, oj)pj
,

(22)R̃(aP|[o]R) = �PPP̃(O|[o]R) + �PN(1 − P̃(O|[o]R));

(23)R̃(aB|[o]R) = �BPP̃(O|[o]R) + �BN(1 − P̃(O|[o]R));

(24)R̃(aN|[o]R) = �NPP̃(O|[o]R) + �NN(1 − P̃(O|[o]R)).
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The decision rules (P1)–(N1) are the three-way decisions, 
which have three regions: POS(O), BND(O) and NEG(O). 
These rules mainly rely on the comparisons among 
R̃(aP|[o]R) , R̃(aB|[o]R) and R̃(aN|[o]R) which are essentially 
computing the fuzzy probabilities.

Decision rules (P1)–(N1) of three-way decisions can be 
simplified as

(P2) If o satisfied P̃(O|[o]R) ≥ � and P̃(O|[o]R) ≥ � , then 
o ∈ POS(O).
(B2) If o satisfied �P(O|[o]R) < 𝛼 and �P(O|[o]R) > 𝛽 , then 
o ∈ BND(O).
(N2) If o satisfied �P(O|[o]R) < 𝛾 and P̃(O|[o]R) ≤ � , then 
o ∈ NEG(O).

Threshold �, �, � are showed in the previous equation.
The additional conditions of decision rule (B2) need that 

𝛽 < 𝛼 , namely, it follows that 0 ≤ 𝛽 < 𝛾 < 𝛼 ≤ 1 . The above 
rules are simplified as

(P3) If o satisfied P̃(O|[o]R) ≥ � , then o ∈ POS(O).
(B3) If o satisfied 𝛽 < �P(O|[o]R) < 𝛼 , then o ∈ BND(O).
(N3) If o satisfied P̃(O|[o]R) ≤ � , then o ∈ NEG(O).

It can be seen from the above rules, and � is not needed any 
more.

Definition 3.5 According to the rules from (P3) to (N3) , the 
�-lower and �-upper approximations are defined in IVFIS 
as follows:

Moreover, we have the positive region, boundary region, 
and negative region of IVFIS as follows:

(25)R�(O) = {o ∈ U ∶ P̃(O|[o]R) ≥ �},

(26)R
𝛽
(O) = {o ∈ U ∶ �P(O|[o]R) > 𝛽}.

(27)POS�(O) = {o ∈ U ∶ P̃(O|[o]R) ≥ �};

Obviously, the relationships between the approximation 
operator and the decision domain are as follows:

The order pair (R�(O),R
�
(O)) is termed (�, �)-fuzzy proba-

bilistic rough set of O on IVFIS.
According to DTRS, suppose the loss function satisfies 

0 ≤ 𝜆PP ≤ 𝜆BP < 𝜆NP , 0 ≤ 𝜆NN ≤ 𝜆BN < 𝜆PN and (�
BP

− �
PP
)

(�
BN

− �
NN

) ≤ (�
NP

− �
BP
)(�

PN
− �

BN
) , then we can get 

0 ≤ 𝛽 < 𝛾 < 𝛼 ≤ 1 . There are three cases.
Case 1 When � + � = 1 , the loss function must satisfies 

(�BP − �PP)(�NP − �BP) = (�PN − �BN)(�BN − �NN).
Case 2 When 𝛼 + 𝛽 < 1 , the loss function must satisfies 

(𝜆BP − 𝜆PP)(𝜆NP − 𝜆BP) > (𝜆PN − 𝜆BN)(𝜆BN − 𝜆NN).
Case 3 When 𝛼 + 𝛽 > 1 , the loss function must satisfies 

(𝜆BP − 𝜆PP)(𝜆NP − 𝜆BP) < (𝜆PN − 𝜆BN)(𝜆BN − 𝜆NN).

Case analysis In the next, let us consider an issue of 
enterprise credit evaluation. The evaluation indexes 
are the solvency, operation ability, profit ability, 
development prospect and innovation ability of the 
enterprise. Table  2 gives an IVFIS on credit evalu-
ation for ten enterprises by some experts, where 
U = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10} indicates ten enter-
pr isers ,  A = {thesolvency, operationability, profitability,

developmentprospect, innovationabilityoftheenterprise} rep-
resents condition-attributes set, respectively. For the sake of 
simplicity, using a1, a2, a3, a4, a5 to take the place of indexes.

It can be converted into a fuzzy approximation space. The 
details are exhibited in Table 3. It is not difficult for us to see 
that Table 3 shows a fuzzy equivalence relation(reflexive, 
symmetric and transitive) among ten classes (because of 
symmetric, we just give the lower triangle of the Table 3).

(28)NEG�(O) = {o ∈ U ∶ P̃(O|[o]R) ≤ �};

(29)BND(𝛼,𝛽)(O) = {o ∈ U ∶ 𝛽 < �P(O|[o]R) < 𝛼}.

R�(O) = POS�(O),R
�
(O) = (NEG�(O))c.

Table 2  IVFIS on the 
enterprises’ credit evaluation

U a1 a2 a3 a4 a5

o1 [0.69, 0.91] [0.64, 0.66] [0.01, 0.86] [0.18, 0.26] [0.18, 0.53]
o2 [0.51, 0.70] [0.17, 0.22] [0.13, 0.57] [0.42, 0.62] [0.09, 0.14]
o3 [0.60, 0.91] [0.57, 0.98] [0.01, 0.46] [0.50, 0.71] [0.69, 0.99]
o4 [0.26, 0.55] [0.05, 0.25] [0.34, 0.83] [0.47, 0.99] [0.55, 0.63]
o5 [0.55, 0.75] [0.09, 0.41] [0.49, 0.85] [0.59, 0.63] [0.05, 0.48]
o6 [0.12, 0.67] [0.03, 0.92] [0.57, 0.68] [0.26, 0.43] [0.78, 0.92]
o7 [0.39, 0.39] [0.66, 0.95] [0.56, 0.80] [0.89, 0.92] [0.77, 0.79]
o8 [0.55, 0.71] [0.06, 0.06] [0.00, 0.76] [0.42, 0.98] [0.07, 0.12]
o9 [0.24, 0.51] [0.07, 0.63] [0.61, 0.67] [0.05, 0.08] [0.17, 0.95]
o10 [0.33, 0.49] [0.37, 0.66] [0.46, 0.89] [0.25, 0.68] [0.10, 0.46]
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Now, let us suppose that the preference probability dis-
tribution on U is {0.15, 0.08, 0.1, 0.07, 0.11, 0.1, 0.16, 0.04,
0.05, 0.14} . Let O = {o1, o3, o6, o7, o10} represents a reliable 
decision class of the enterprise. In the Bayes decision pro-
cess, some experts will provide values of the loss function 
for O, i.e., �iP = �(ai|O), �iN = �(ai|Oc), i = P,B,N.

In addition, for ∀oi ∈ U , according to the formula (20) 
and (21), the fuzzy conditional probabilities are computed 
as follows:

Case 1 Take the value of the loss function 1 in Table 4 
into the (12)–(14) of the threshold �, �, � , we can get 
�1 = 0.54, �1 = 0.46; �2 = 0.6, �2 = 0.4; �3 = 0.7, �3 = 0.3;

�4 = 0.8, �4 = 0.2 . Obviously, �i + �i = 1(i = 1, 2, 3, 4). 
When � + � = 1 , according to (25) and (26), we can get

P̃(O|[o1]R) = 0.76, P̃(O|[o2]R) = 0.42, P̃(O|[o3]R) = 0.80,

P̃(O|[o4]R) = 0.49, P̃(O|[o5]R) = 0.47,

P̃(O|[o6]R) = 0.74, P̃(O|[o7]R) = 0.82, P̃(O|[o8]R) = 0.41,

P̃(O|[o9]R) = 0.58, P̃(O|[o10]R) = 0.68.

R0.54(O) = {o1, o3, o6, o7, o9, o10},

R
0.46

(O) = {o1, o3, o4, o5, o6, o7, o9, o10}.

R0.6(O) = {o1, o3, o6, o7, o10},

R
0.4
(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

R0.7(O) = {o1, o3, o6, o7},

R
0.3
(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

R0.8(O) = {o3, o7},

R
0.2
(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

and

Case 2 Take the value of the loss function 2 in Table 5 
into the calculation formula of the threshold �, �, �,we can 
get �1 = 0.56, �1 = 0.42; �2 = 0.6, �2 = 0.3; �3 = 0.7, �3 = 0.2;

�4 = 0.8, �4 = 0.1. Obviously, 𝛼i + 𝛽i < 1(i = 1, 2, 3, 4). 
When 𝛼 + 𝛽 < 1, according to the definition of the �-lower 
and �-upper approximation, we can get

POS
0.54(O) = {o1, o3, o6, o7, o9, o10},

NEG
0.46(O) = {o2, o8},

BND
(0.54,0.46)(O) = {o4, o5}.

POS
0.6(O) = {o1, o3, o6, o7, o10},

NEG
0.4(O) = �,

BND
(0.6,0.4)(O) = {o2, o4, o5, o8, o9}.

POS
0.7(O) = {o1, o3, o6, o7},

NEG
0.3(O) = �,

BND
(0.7,0.3)(O) = {o2, o4, o5, o8, o9, o10}.

POS
0.8(O) = {o3, o7},

NEG
0.2(O) = �,

BND
(0.8,0.2)(O) = {o1, o2, o4, o5, o6, o8, o9, o10}.

R
0.56(O) = {o1, o3, o6, o7, o9, o10},

R
0.42

(O) = {o1, o3, o4, o5, o6, o7, o9, o10}.

R
0.6(O) = {o1, o3, o6, o7, o10},

R
0.3

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

R
0.7(O) = {o1, o3, o6, o7},

R
0.2

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

R
0.8(O) = {o3, o7},

R
0.1

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

Table 3  Fuzzy equivalence 
relation on U 

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

o1 1.0000
o2 0.2478 1.0000
o3 0.2698 0.1911 1.0000
o4 0.1620 0.3027 0.1773 1.0000
o5 0.2794 0.4584 0.1782 0.3697 1.0000
o6 0.1604 0.1628 0.2491 0.2698 0.2198 1.0000
o7 0.1381 0.1103 0.2698 0.2567 0.1854 0.2725 1.0000
o8 0.2112 0.5945 0.1473 0.3482 0.3867 0.1206 0.1070 1.0000
o9 0.2254 0.1873 0.1313 0.2322 0.2503 0.3946 0.1496 0.1360 1.0000
o10 0.3379 0.3263 0.1746 0.3345 0.4630 0.2579 0.2454 0.2491 0.3379 1.0000

Table 4  Three cases of loss 
function 1

O O
c O O

c O O
c O O

c

a
P

0.20 0.90 0.00 0.22 0.00 0.13 0.00 0.36
a
B

0.54 0.50 0.12 0.04 0.03 0.06 0.08 0.04
a
N

0.89 0.20 0.18 0.00 0.17 0.00 0.24 0.00
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and

Case 3 Take the value of the loss function 3 in Table 6 into 
the calculation formula of the threshold �, �, �,we can get 
�1 = 0.73, �1 = 0.47;�2 = 0.6, �2 = 0.5; �3 = 0.7, �3 = 0.4;

�4 = 0.8, �4 = 0.3. Obviously, 𝛼i + 𝛽i > 1(i = 1, 2, 3, 4). 
When 𝛼 + 𝛽 > 1 , according to the definition of the �-lower 
and �-upper approximation,we can get

POS0.56(O) = {o1, o3, o6, o7, o9, o10},

NEG0.42(O) = {o2, o8},

BND(0.56,0.42)(O) = {o4, o5}.

POS0.6(O) = {o1, o3, o6, o7, o10},

NEG0.3(O) = �,

BND(0.6,0.3)(O) = {o2, o4, o5, o8, o9}.

POS0.7(O) = {o1, o3, o6, o7},

NEG0.2(O) = �,

BND(0.7,0.2)(O) = {o2, o4, o5, o8, o9, o10}.

POS0.8(O) = {o3, o7},

NEG0.1(O) = �,

BND(0.8,0.1)(O) = {o1, o2, o4, o5, o6, o8, o9, o10}.

R0.73(O) = {o1, o3, o6, o7, o9, o10},

R
0.47

(O) = {o1, o3, o4, o6, o7, o9, o10}.

R0.6(O) = {o1, o3, o6, o7, o10},

R
0.5
(O) = {o1, o3, o6, o7, o9, o10}.

R0.7(O) = {o1, o3, o6, o7},

R
0.4
(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

R0.8(O) = {o3, o7},

R
0.3
(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

and

4  IVF probability decision‑theoretic rough 
set based on IVFIS

In the third part, we have considered an IVFIS which is 
transformed into a real-valued fuzzy approximation space. 
However, the expression of a constant is often imprecise in 
practical life. Therefore, in this section we will convert an 
IVFIS into an IVF probabilistic approximation space. Then, 
we will put forward the DTRS method under the background 
of IVF probabilistic approximation space.

Definition 4.1 Let I = (U,AT ,V ,F) be an IVFIS, ∀ak ∈ AT , 
oi, oj ∈ U  , f (oi, ak) = [aL

k
(oi), a

U
k
(oi)] , f (oj, ak) = [aL

k
(oj),

aU
k
(oj)] , then

POS0.73(O) = {o1, o3, o6, o7},

NEG0.47(O) = {o2, o5, o8},

BND(0.73,0.47)(O) = {o4, o9, o10}.

POS0.6(O) = {o1, o3, o6, o7, o10},

NEG0.5(O) = {o2, o4, o5, o8,

BND(0.6,0.5)(O) = {o9}.

POS0.7(O) = {o1, o3, o6, o7},

NEG0.4(O) = �,

BND(0.7,0.4)(O) = {o2, o4, o5, o8, o9, o10}.

POS0.8(O) = {o3, o7},

NEG0.3(O) = �,

BND(0.8,0.3)(O) = {o1, o2, o4, o5, o6, o8, o9, o10}.

(30)

r−
ij
= exp

{
−
1

2

[
p∑

k=1

|aL
k
(oi) − aL

k
(oj)|

+

p∑

k=1

|aU
k
(oi) − aU

k
(oj)|

]}
;

Table 5  Three cases of loss 
function 2

O O
c O O

c O O
c O O

c

a
P

0.10 0.80 0.00 0.09 0.00 0.19 0.00 0.18
a
B

0.34 0.50 0.02 0.06 0.06 0.05 0.04 0.02
a
N

0.62 0.30 0.16 0.00 0.26 0.00 0.22 0.00

Table 6  Three cases of loss 
function 3

O O
c O O

c O O
c O O

c

a
P

0.40 0.48 0.00 0.13 0.00 0.13 0.00 0.19
a
B

0.43 0.40 0.06 0.04 0.03 0.06 0.04 0.03
a
N

0.72 0.14 0.10 0.00 0.12 0.00 0.11 0.00
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The interval-valued fuzzy relation R could be obtained on U 
with the above formula. As follows:

Based on the above definition, we establish interval-valued 
approximation space (U, R̃) . Clearly, R̃ is an interval-valued 
fuzzy relation that satisfies reflexive and symmetric.

Definition 4.2 (Pawlak 1982) Let R̃ = {rij ∶ i, j ≤ n}, rij ∈ [I] 
represent the value of interval-valued fuzzy relation R̃ of the 
ith object and the jth object on the domain U, R̃◦R̃ is defined 
as follows:

R̃◦R̃ is called fuzzy compound calculation on R̃.

Especially, (U, R̃2) is obviously an interval-valued approx-
imation space.

Theorem 4.3 Assume that �R ⊆ F(U × U), then R̃ has the fol-
lowing properties:

1. R̃ is reflexive, R̃m is also reflexive;
2. R̃ is symmetric, R̃m is also symmetric.

Proof Below, we apply the mathematical induction method 
to prove the theorem.

1. If m = 2, because R̃ is reflexive, so R̃(o, o) =1. In addition, 
R̃2 = R̃◦R̃ = {tij ∶ i, j ≤ n}, tij = ∨

n

k=1
(rik ∧ rkj) . There-

fore,  R̃2(o, o) = (R̃◦R̃)(o, o) = ∨o∈O(R̃(o, o) ∧ R̃(o, o)) 
=1. Now, assume R̃m−1(o, o) =1, there have 
R̃m(o, o) = ∨o∈O(R̃(o, o)

m−1 ∧ R̃(o, o))=1. Therefore,R̃m 
is also reflexive.

2. If m = 2, because R̃ is symmetric, so R̃(o, y) = R̃(y, o) . In 
addition, R̃2 = R̃◦R̃ = {tij ∶ i, j ≤ n}, tij = ∨

n

k=1
(rik ∧ rkj) . 

T h e r e fo r e ,  R̃
2(o, y) = (R̃◦R̃)(o, y) = ∨

z∈O(R̃(o, z)∧

R̃(z, y)) = ∨
z∈O(R̃(y, z) ∧ R̃(z, o)) = R̃

2(y, o) . Now, assume  
R̃m−1(o, y) = R̃m−1(y, o) , there have R̃m(o, y) = ∨

z∈O(R̃
m−1

(o, z) ∧ R̃(z, y)) = ∨
z∈O(R̃(y, z) ∧ R̃

m−1(z, o)) = R̃
m(y, o)  . 

Therefore, R̃m is also symmetric.

  □

(31)

r+
ij
= exp

{
−
1

2
|

p∑

k=1

|aL
k
(oi) − aL

k
(oj|

−

p∑

k=1

|aU
k
(oi) − aU

k
(oj)||

}
.

(32)R̃ = {rij ∶ i, j ≤ n}, rij = [r−
ij
, r+

ij
] ∈ [I].

(33)R̃2 = R̃◦R̃ = {tij ∶ i, j ≤ n}, tij = ∨
n

k=1
(rik ∧ rkj)

From the above, it can conclude that R̃ is an interval-
valued fuzzy similarity relation. Now, the problem is to 
make decision for the objects with similar relation. Then, 
the next work is to transform the interval-valued fuzzy simi-
larity relation into interval-valued fuzzy equivalence rela-
tion. Now, defining R̃m+1 = R̃m◦R̃ , when the interval-valued 
fuzzy relation R does not satisfy transitivity, then there exists 
m ∈ N , such that R = R̃m , and R is transitive.

Theorem 4.4 Let (U, R̃) be an interval-valued approximation 
space, where interval-valued fuzzy relation R̃ is reflexive, 
symmetric, then (U, R̃)(R̂ = R̃m,m ∈ N,m ≤ |U|) must be an 
interval-valued fuzzy approximation space.

Proof Because R̃ is reflexive, symmetric, and R̂ = R̃m , so R̃ 
is transitive. Therefore, (U, R̃) is an interval-valued fuzzy 
approximation space.

Now, given the probability P with its description R, 
then IVF probability approximation space (U,  R,  P) is 
constructed.

In the next, we will construct the basic model of 
IVFDTRS in accordance with the method in Sect. 2. The 
interval-value loss function for action cost under different 
conditions is shown in Table 5.

In Table 5, �−
ij
 and �+

ij
 are lower bound and upper bound 

of �ij(i, j = P,B,N) . �PP = [�−
PP
, �+

PP
] , �BP = [�−

BP
, �+

BP
] , and 

�NP = [�−
NP
, �+

NP
] indicate the costs for taking actions of aP , 

aB , and aN , respectively, when an element is in O. In other 
w o r d s ,  �PN = [�−

PN
, �+

PN
]  ,  �BN = [�−

BN
, �+

BN
]  a n d 

�NN = [�−
NN

, �+
NN

] denote the losses for taking the same 
actions when an element belongs to Oc . On the basis of con-
ditions in a reasonable assumption, a particular kind of loss 
function is considered:

For a target o, the expected losses ℛ(ai|[x]R) of each action 
are as follows:

Theorem 4.5 (Zhao and Hu 2015) Given two IVF probabili-
ties P(O|[o]R) and P(Oc|[o]R). If O(O ⊆ U) is a classical 
event, then

𝜆−
PP

≤ 𝜆−
BP

< 𝜆−
NP
, 𝜆+

PP
≤ 𝜆+

BP
< 𝜆+

NP
,

𝜆−
NN

≤ 𝜆−
BN

< 𝜆−
PN
, 𝜆+

NN
≤ 𝜆+

BN
< 𝜆+

PN
.

(34)ℛ(aP|[o]R) = �PPP(O|[o]R) + �PNP(O
c|[o]R);

(35)ℛ(aB|[o]R) = �BPP(O|[o]R) + �BNP(O
c|[o]R);

(36)ℛ(aN|[o]R) = �NPP(O|[o]R) + �NNP(O
c|[o]R).

(37)P(O|[o]R) = [p− ∧ p+, p− ∨ p+];

(38)P(Oc|[o]R) = [1 − p− ∨ p+, 1 − p− ∧ p+],
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where R = [R−,R+], p− = P(O|[o]R−) and p+ = P(O|[o]R+). 
If U = {o1, o2,… , on} and P(oi) = pi, then

Furthermore, if we take the value of the loss function in 
Table 7, then we can get

In light of Bayesian decision procedure, the decision rules 
(P) − (N) in Sect. 2 could be re-expressed as follows:

(P�) If o satisfy ℛ(P|[o]R) ⪯ ℛ(aB|[o]R) and ℛ(a
P
|[o]

R
)

⪯ ℛ(a
N
|[o]

R
) , then o ∈ POS(O).

(N�) I f  o  sa t isfy ℛ(aN|[o]R) ⪯ ℛ(aB|[o]R) and 
ℛ(aN|[o]R) ⪯ ℛ(aP|[o]R) , then o ∈ NEG(O)

(B�) If o satisfy neither (P�) nor (N�) , then o ∈ BND(O).

Definition 4.6 Let (U,ℛ,𝒫) be an interval-valued fuzzy 
probabilistic approximation space. The loss function is the 
interval-value [�] . The POS[�],BND[�],NED[�] are expressed 
as follows:

(39)p− =

∑
oi∈O

R−(o, oi)pi
∑

oj∈U
R−(o, oj)pj

,

(40)p+ =

∑
oi∈O

c R
+(o, oi)pi

∑
oj∈U

R+(o, oj)pj
.

(41)
ℛ(aP|[o]R)

= [�−
PP
, �+

PP
]P(O|[o]R) + [�−

PN
, �+

PN
]P(Oc|[o]R);

(42)
ℛ(aB|[o]R)

= [�−
BP
, �+

BP
]P(O|[o]R) + [�−

BN
, �+

BN
]P(Oc|[o]R);

(43)
ℛ(aN|[o]R)

= [�−
NP
, �+

NP
]P(O|[o]R) + [�−

NN
, �+

NN
]P(Oc|[o]R).

(44)
POS[�](O) = {o ∈ U|ℛ(aP|[o]R) ⪯ ℛ(aB|[o]R),

ℛ(aP|[o]R) ⪯ ℛ(aN|[o]R)};

(45)
NEG[�](O) = {o ∈ U|ℛ(aN|[o]R) ⪯ ℛ(aB|[o]R),

ℛ(aN|[o]R) ⪯ ℛ(aP|[o]R)};

For an interval-valued fuzzy relation R, the [�]-IVF prob-
ability lower approximation and the [�]-IVF probability 
upper approximation are, respectively:

The order pair (ℛ[�](O),ℛ
[�]
(O)) is named the [�]-IVF prob-

ability rough set of O.
The decision rules (P�)–(N�) are the three-way deci-

sions, which have three regions: POS(O), BND(O) and 
NEG(O). These rules mainly rely on the comparisons among 
ℛ(aP|[o]R) , ℛ(aB|[o]R) and ℛ(aN|[o]R) which are essen-
tially computing the IVF probabilities. Therefore, the condi-
tions for calculating decision rules are as follows.

For the rule (P�):

For the rule (N�):

From the above, the decision rules (P�) − (N�) can be rewrit-
ten as follows:

(P�
1
) If o satisfy

and

then o ∈ POS(O).
(N�

1
) If o satisfy

(46)BND[�](O) = (POS[�](O) ∩ NEG[�](O))c.

(47)ℛ
[�](O) = POS[�](O),ℛ

[�]
(O) = (NEG[�](O))c.

ℛ(aP|[o]R) ⪯ ℛ(aB|[o]R)

⇔ P(O|[o]R) ⪰
[�−

PN
− �−

BN
, �+

PN
− �+

BN
]

[�−
BP

− �−
PP
, �+

BP
− �+

PP
]
P(Oc|[o]R)

ℛ(aP|[o]R) ⪯ ℛ(aN|[o]R)

⇔ P(O|[o]R) ⪰
[�−

PN
− �−

NN
, �+

PN
− �+

NN
]

[�−
NP

− �−
PP
, �+

NP
− �+

PP
]
P(Oc|[o]R)

ℛ(aN|[o]R) ⪯ ℛ(aP|[o]R)

⇔ P(O|[o]R) ⪯
[�−

PN
− �−

NN
, �+

PN
− �+

NN
]

[�−
NP

− �−
PP
, �+

NP
− �+

PP
]
P(Oc|[o]R)

ℛ(aN|[o]R) ⪯ ℛ(aB|[o]R)

⇔ P(O|[o]R) ⪯
[�−

BN
− �−

NN
, �+

BN
− �+

NN
]

[�−
NP

− �−
BP
, �+

NP
− �+

BP
]
P(Oc|[o]R)

P(O|[o]R) ⪰
[�−

PN
− �−

BN
, �+

PN
− �+

BN
]

[�−
BP

− �−
PP
, �+

BP
− �+

PP
]
P(Oc|[o]R)

P(O|[o]R) ⪰
[�−

PN
− �−

NN
, �+

PN
− �+

NN
]

[�−
NP

− �−
PP
, �+

NP
− �+

PP
]
P(Oc|[o]R),

Table 7  Interval-valued loss function

O : positive O
c ∶negative

a
P �

PP
= [�−

PP
, �+

PP
] �

PN
= [�−

PN
, �+

PN
]

a
B �

BP
= [�−

BP
, �+

BP
] �

BN
= [�−

BN
, �+

BN
]

a
N �

NP
= [�−

NP
, �+

NP
] �

NN
= [�−

NN
, �+

NN
]
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and

then o ∈ NEG(O).
(B�

1
) If o satisfy neither (P�

1
) nor (N�

1
) , then o ∈ BND(O).

Therefore, from Bayesian decision procedure, the rules 
(P�

1
) − (N�

1
) could be expressed as follows:

(P�
2
) If o satisfy

and

then (P�
2
) o ∈ POS(O).

(N�
2
) If o satisfy

and

then o ∈ NEG(O).
(B�

2
) If o satisfy neither (P�

2
) nor (N�

2
) , then o ∈ BND(O).

In rules (P�
1
) − (N�

1
) , the parameters are set as follows:

P(O|[o]R) ⪯
[�−

PN
− �−

NN
, �+

PN
− �+

NN
]

[�−
NP

− �−
PP
, �+

NP
− �+

PP
]
P(Oc|[o]R)

P(O|[o]R) ⪯
[�−

BN
− �−

NN
, �+

BN
− �+

NN
]

[�−
NP

− �−
BP
, �+

NP
− �+

BP
]
P(Oc|[o]R),

P(O|[o]R) ⪰ [�−, �+]P(Oc|[o]R)

P(O|[o]R) ⪰ [�−, �+]P(Oc|[o]R),

P(O|[o]R) ⪯ [�−, �+]P(Oc|[o]R)

P(O|[o]R) ⪯ [�−, �+]P(Oc|[o]R),

(48)�− =
�−
PN

− �−
BN

�−
BP

− �−
PP

∧
�+
PN

− �+
BN

�+
BP

− �+
PP

,

(49)�+ =
�−
PN

− �−
BN

�−
BP

− �−
PP

∨
�+
PN

− �+
BN

�+
BP

− �+
PP

(50)�− =
�−
PN

− �−
NN

�−
NP

− �−
PP

∧
�+
PN

− �+
NN

�+
NP

− �+
PP

,

(51)�+ =
�−
PN

− �−
NN

�−
NP

− �−
PP

∨
�+
PN

− �+
NN

�+
NP

− �+
PP

(52)�− =
�−
BN

− �−
NN

�−
NP

− �−
BP

∧
�+
BN

− �+
NN

�+
NP

− �+
BP

,

Therefore, we can have the following property.

Theorem  4.7 For convenience, if we briefly denote 
� = [�−, �+], � = [�−, �+] and � = [�−, �+], then IVF prob-
ability regions are simplified as follows:

For the fuzzy relation R, the IVF probability upper approxi-
mation and the fuzzy probability lower approximation of O 
are, respectively:

The order pair (ℛ(�,�)(O),ℛ
(� ,�)

(O)) is named (�, � , �)-IVF 
probability rough set of O.

In reference [55], the additional conditions of deci-
sion rule (N�

2
) suggest that 𝛽 < 𝛼 , namely, it follows that 

0 ≤ 𝛽 < 𝛾 < 𝛼 ≤ 1 , and the rules are

(P�
3
) If o satisfies P(O|[o]R) ⪰ [�−, �+]P(Oc|[o]R) , then 

o ∈ POS(O).
(N�

3
) If o satisfies P(O|[o]R) ⪯ [�−, �+]P(Oc|[o]R) , then 

o ∈ NEG(O).
(B�

3
) If o satisfies neither (P�

3
) nor (N�

3
) , then o ∈ BND(O).

Thus, we can have the following theorem.

Theorem 4.8 The IVF probability regions are simplified as 
follows:

(53)�+ =
�−
BN

− �−
NN

�−
NP

− �−
BP

∨
�+
BN

− �+
NN

�+
NP

− �+
BP

(54)

POS(�,�)(O) = {o ∈ U ∶ P(O|[o]R) ⪰ [�−, �+]P(Oc|[o]R),

P(O|[o]R) ⪰ [�−, �+]P(Oc|[o]R);

(55)

NEG(� ,�)(O) = {o ∈ U ∶ P(O|[o]R) ⪯ [�−, �+]P(Oc|[o]R),

P(O|[o]R) ⪯ [�−, �+]P(Oc|[o]R);

(56)BND(�,� ,�)(O) = (POS((�,�))(O) ∪ NEG((� ,�))(O))c.

(57)ℛ
(�,�)(O) = POS(�,�)(O),

(58)ℛ
(� ,�)

(O) = (NEG(� ,�)(O))c.

POS(�)(O)

= {o ∈ U ∶ P(O|[o]R) ≥ [�−, �+]P(Oc|[o]R)},
NEG(�)(O)

= {o ∈ U ∶ P(O|[o]R) ≤ [�−, �+]P(Oc|[o]R)},
BND(�, �)(O) = (POS�(O) ∪ NEG�(O))c.
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According to the IVF relation ℛ , the IVF probability 
lower approximation and the IVF probability upper approxi-
mation of O are shown as follows, respectively:

The order pair (ℛ�(O),ℛ
�
(O)) is named the (�, �)-IVF 

probability rough set of O.
According to decision-theoretic rough set, we sup-

pose that the loss function satisfies 0 ≤ 𝜆PP ≤ 𝜆BP < 𝜆NP , 
0 ≤ 𝜆NN ≤ 𝜆BN < 𝜆PN and (�

BP
− �

PP
)(�

BN
− �

NN
) ≤ (�

NP
−

�
BP
)(�

PN
− �

BN
) , then we can get 0 ≤ 𝛽 < 𝛾 < 𝛼 ≤ 1 . Mean-

while, this paper also discusses different situations between 
the value of � + � and [1, 1].

Case study Now, let us continue to use case analysis 3.3 
as the research object, and make the rough set theory of 
decision making under the interval-valued probability 
approximation space. On the basis of Table 2, the hypothesis 
(U,ℛ,P) is an interval-valued fuzzy probability approxima-
tion space, including U = {o1, o2,… , o10} , R is an interval-
valued fuzzy relation in Table 8.

We assume that the preference probability distribution on 
U is p(o1) = 0.15 , p(o2) = 0.08 , p(o3) = 0.10 , p(o4) = 0.07 , 
p(o5) = 0.11 , p(o6) = 0.10 , p(o7) = 0.16 , p(o8) = 0.04 , 
p(o9) = 0.05 ,  p(o10) = 0.14 .  Let O = {o1, o3, o6, o7, o10} 
denotes a decision class in which the classes are excellent. 
Some experts will provide values of the loss function value for 
O = {o1, o3, o6, o7, o10} , i.e., �

iP
= �(a

i
|O), �

iN
= �(a

i
|Oc),

i = P,B,N . It exhibits three cases in Table 7. Considering the 
loss function of Table 7, there are � = [1.9, 2.0], � = [0.7, 1.2].

According to the formula (37)–(40), the interval-valued 
fuzzy conditional probabilities for every oi ∈ U are computed 
as follows:

ℛ
(�)(O) = POS(�)(O),ℛ

(�)
(O) = (NEG(�)(O))c

Therefore, if we take loss functions for O in Table 9, then 
we can have

Case 1 When 𝛼 + 𝛽 > [1, 1] , according to the formula (57) 
and (58), the IVFS lower and upper approximation about the 
(�, �)-IVF probability rough set are calculated as follows:

P(O|[o1]ℛ) = (0.43, 0.80),

P(O|[o2]ℛ) = (0.45, 0.69),

P(O|[o3]ℛ) = (0.45, 0.69),

P(O|[o4]ℛ) = (0.45, 0.69),

P(O|[o5]ℛ) = (0.40, 0.88),

P(O|[o6]ℛ) = (0.72, 0.38),

P(O|[o7]ℛ) = (0.59, 0.43),

P(O|[o8]ℛ) = (0.43, 0.80),

P(O|[o9]ℛ) = (0.39, 0.86),

P(O|[o10]ℛ) = (0.73, 0.40).

ℛ
[1.90,2.00](O) = {o1, o3, o7},

ℛ
[1.11,1,20]

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

ℛ
[2.00,2.33](O) = �,

ℛ
[1.5,1.94]

(O) = {o1, o2, o3, o4, o6, o7, o8, o9, o10}.

Table 8  Interval-valued relation on U 

U o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

o1 [1.00, 1.00]
o2 [0.25, 0.74] [1.00, 1.00]
o3 [0.27, 0.73] [0.19, 0.69] [1.00, 1.00]
o4 [0.16, 0.83] [0.30, 0.90] [0.18, 0.69] [1.00, 1.00]
o5 [0.28, 0.65] [0.46, 0.91] [0.18, 0.98] [0.37, 0.90] [1.00, 1.00]
o6 [0.16, 0.55] [0.16, 0.99] [0.25, 0.59] [0.27, 0.62] [0.22, 0.89] [1.00, 1.00]
o7 [0.14, 0.83] [0.11, 0.98] [0.27, 0.99] [0.26, 0.79] [0.18, 0.87] [0.27, 0.78] [1.00, 1.00]
o8 [0.21, 0.62] [0.59, 0.80] [0.15, 0.52] [0.35, 0.89] [0.39, 0.79] [0.12, 0.81] [0.11, 0.77] [1.00, 1.00]
o9 [0.26, 0.76] [0.19, 0.69] [0.13, 0.67] [0.23, 0.71] [0.25, 0.76] [0.39, 0.91] [0.15, 0.72] [0.14, 0.55] [1.00, 1.00]
o10 [0.34, 0.86] [0.35, 0.79] [0.17, 0.98] [0.33, 0.92] [0.46, 0.86] [0.26, 0.99] [0.24, 0.70] [0.25, 0.82] [0.34, 0.76] [1.00, 1.00].

Table 9  Loss functions for O 

O:  positive O
c : negative

a
P
 : accept �

PP
= [0.30, 0.40] �

PN
= [0.99, 1.00]

a
B
 : reject �

BP
= [0.70, 0.75] �

BN
= [0.23, 0.30]

a
N

 : defer �
NP

= [0.80, 0.84] �
NN

= [0.11, 0.20]
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and (�, �)-IVF probability decision domain:

Case 2 When 𝛼−
i
+ 𝛽−

i
< 1, 𝛼+

i
+ 𝛽+

i
< 1 , according to the 

formula (57) and (58), the IVFS lower and upper approxi-
mations about the (�, �)-IVF probability rough set are cal-
culated as follows:

In addition, (�, �)-IVF probability can be obtained in the 
following:

Case 3 When 𝛼 + 𝛽 < [1, 1] , according to the formula (57) 
and (58), the IVFS lower and upper approximation about the 
(�, �)-IVF probability rough set are calculated as follows:

and (�, �)-IVF probability decision domain

POS[1.90,2.00](O) = {o1, o3, o6, o7, o9, o10},

NEG[1.11,1.20](O) = {o2, o8},

BND[1.90,2.00],[1.11,1.20])(O) = {o4, o5}.

POS[2.00,2.33](O) = {o1, o3, o6, o7, o9, o10},

NEG[1.5,1.94](O) = {o2, o8},

BND[2.00,2.33],[1.5,1.94])(O) = {o4, o5}.

ℛ
[0.5,2.33](O) = �,

ℛ
[0.43,0.6]

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

ℛ
[0.5,1.33](O) = {o1, o2, o3, o4, o6, o7, o8, o9, o10},

ℛ
[0.43,0.6]

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

ℛ
[0.2,0.8](O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10},

ℛ
[0.2,0.8]

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

POS
[0.5,2.33](O) = �,

NEG
[0.43,0.6](O) = �,

BND
[0.5,2.33],[0.43,0.6])(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

POS
[2.00,2.33](O) = {o1, o2, o3, o4, o6, o7, o8, o9, o10},

NEG
[1.5,1.94](O) = �,

BND
[2.00,2.33],[1.5,1.94])(O) = {o5}.

POS
[2.00,2.33](O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10},

NEG
[1.5,1.94](O) = �,

BND
[2.00,2.33],[1.5,1.94])(O) = �.

ℛ
[0.25,0.32](O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10},

ℛ
[0.4,0.67]

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

ℛ
[0.45,0.46](O) = �,

ℛ
[0.51,0.53]

(O) = {o1, o2, o3, o4, o6, o7, o8, o9, o10}.

Case 4 When � + � = 1 , according to the formula (57) and 
(58), the IVFS lower and upper approximation about the 
(�, �)-IVF probability rough set are calculated as follows:

and (�, �)-IVF probability decision domain

5  Conclusions

In this paper, interval-valued fuzzy information systems 
is converted into two kinds of approximate spaces (fuzzy 
approximation space and interval-valued fuzzy approxima-
tion space) using different relations. By considering fuzzy 
probability and interval-valued fuzzy probability, fuzzy and 
interval-valued fuzzy decision-theoretic rough set methods 
are established in this paper. The main contributions of this 
paper are as below. Firstly, fuzzy decision-theoretic rough 
set is discussed in interval fuzzy information system. Moreo-
ver, the corresponding measures and performance are con-
sidered in the approximation space. Second, interval-valued 
fuzzy decision-theoretic rough set method is studied to deal 
with actual situation. Finally, a real-life example is con-
structed to explain and illustrate decision-making method. 
Meanwhile, we find that it is necessary that how to inves-
tigate other new decision-making methods under different 
information systems such as inconsistent interval systems, 
incomplete interval systems, and so on. Whether or not there 
are some relationships about different decision rules among 
these different interval systems. These issues are important 
topics studied in the future.
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POS[0.25,0.32](O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10},

NEG[0.4,0.67](O) = �,

BND[0.25,0.32],[0.4,0.67])(O) = �.

POS[0.45,0.46](O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10},

NEG[0.51,0.53](O) = �,

BND[0.45,0.46],[0.51,0.53])(O) = �.

ℛ
(0.5)(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10},

ℛ
(0.5)

(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10}.

POS(0.5)(O) = {o1, o2, o3, o4, o5, o6, o7, o8, o9, o10},

NEG[0.51,0.53](O) = �,

BND[0.45,0.46],[0.51,0.53])(O) = �.
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